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Abstract. All bi-algebra structures for centrally extended Galilei algebra are classified. The
corresponding Lie–Poisson structures on centrally extended Galilei group are found.

1. Introduction

Recently the problem of deformations of spacetime symmetry groups has attracted much
attention [1–7]. One can hope that the deformed groups could provide more general and
flexible framework for describing the basic spacetime symmetries. For example, some of
them, containing dimensionful deformation parameters could describe the deviation from
classical Poincaré symmetry at very high energies providing thereby a natural way of
introducing a momentum cut-off for high-energy processes.

In most papers dealing with the subject the relativistic symmetries are considered.
However, it seems interesting to understand also the structure of deformed nonrelativistic
symmetries. Some preliminary work in this direction has already been done. In particular,
in the recent paper [8] all inequivalent bi-algebra structures on two-dimensional Galilei
algebra were classified and the corresponding Lie–Poisson structures on the group were
found.

From the physical point of view what is really interesting is the central extension of the
Galilei algebra. This is because only the genuine projective representations of the Galilei
group are relevant in nonrelativistic quantum theory [9]. In the present paper we classify
all nonequivalent bi-algebra Lie–Poisson structures for centrally extended two-dimensional
Galilei algebra/group. In the two-dimensional case there exists a two-parameter family of
central extensions, the parameters being the mass of the particle and the constant force
acting on it. We restrict ourselves to the case of free particles, i.e. only the mass parameter
is kept nonvanishing.

The paper is organized as follows. First, we find the general form of a 1-cocycle on
centrally extended two-dimensional Galilei algebra. Then the action of the most general
automorphism transformation on such a 1-cocycle is considered and its orbits are classified,
which allows us to find all nonequivalent bi-algebra structures. The corresponding Lie–
Poisson structures on Galilei group are then found. The whole procedure follows quite
closely the one presented in [10] forE(2) groups and in [8] for two-dimensional Galilei
groups. As a result we find 26 nonequivalent bi-algebra structures (some of them still
one-parameter families), eight of them being the coboundary ones.

0305-4470/98/418387+10$19.50c© 1998 IOP Publishing Ltd 8387
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2. The two-dimensional Galilei group and algebra with central extension and their
automorphisms

The two-dimensional Galilei group is a Lie group of transformations of the spacetime with
one space dimension. An arbitrary group elementg is of the form

g = (τ, v, a) (1)

whereτ is time translation,a andv are space translation and Galilean boost, respectively.
The multiplication law reads

g′g = (τ ′ + τ, v′ + v, a′ + a + τv′). (2)

The resulting Lie algebra takes the form

[K,H ] = iP [K,P ] = 0 [H,P ] = 0. (3)

The central extension is obtained by replacing the second commutation rule by

[K,P ] = iM (4)

where the additional generatorM (mass operator) commutes with all other generators,

[M, ·] = 0. (5)

Therefore, we arrive finally at the following algebra

[K,H ] = iP [K,P ] = iM [H,P ] = 0 [M, ·] = 0. (6)

Let us define the centrally extended Galilei group by the following global expotential
parametrization of group elements

g̃ = eimMe−iτHeiaPeivK. (7)

Let us write

g̃ = (m, τ, v, a). (8)

Then we have the following multiplication law

g̃′g̃ = (m′ +m− 1
2v
′2τ − av′, τ ′ + τ, v′ + v, a′ + a + τv′). (9)

The Lie algebra with central extension can be realized in terms of right-invariant fields
to be calculated according to the standard rules from the composition law (9)

XRv = i

(
∂

∂v
− a ∂

∂m
+ τ ∂

∂a

)
XRa = i

∂

∂a

XRm = i
∂

∂m

XRτ = −i
∂

∂τ
.

(10)

Let us now describe all automorphisms of the algebra (6). The group of automorphisms
consists of the following transformations

K

H

P

M

→

K ′

H ′

P ′

M ′

 =

γ3 α3 β3 η3

0 α1 β1 η1

0 0 β2 η2

0 0 0 η4



K

H

P

M

 (11)
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where

β2 = γ3α1

η2 = γ3β1

η4 = γ3β2

(12)

and, obviously,α1 6= 0, γ3 6= 0.

3. The bi-algebra structures on two-dimensional centrally extended Galilei algebra

Our aim here is to give a complete classification of Lie bi-algebra structures for the algebra
(6) up to automorphisms.

Recall the definition of bi-algebra. It is a pair(L, δ), whereL is a Lie algebra whileδ
is a skewsymmetric cocommutatorδ : L→ L⊗ L, i.e.

(i) δ is a 1-cocycle,

δ([X, Y ]) = [δ(X), 1⊗ Y + Y ⊗ 1]+ [1⊗X +X ⊗ 1, δ(Y )] for X, Y ∈ L
(ii) the dual mapδ∗ : L∗ ⊗ L∗ → L∗ defines a Lie bracket onL∗.
We can find all bi-algebra structures on our algebra. The general form ofδ obeying (i)

is


δ(H)

δ(P )

δ(K)

δ(M)

 =

a 0 0 b c d

0 0 0 a 0 h− b
e 0 f g h j

0 0 0 0 0 −(a + f )



H ∧ P
H ∧K
P ∧K
H ∧M
M ∧K
M ∧ P

 (13)

a, b, c, d, e, f , g, h andj being arbitrary real parameters.
From the condition (ii) we obtain

a = b = c = 0

or

a = e = f = 0 (14)

or

b = c = f = h = 0.

Equations (13) and (14) define all bi-algebra structures on two-dimensional Galilei
algebra (6). However, we are interested in classification of nonequivalent bi-algebra
structures. To this end we find the transformation rules for the parameters under the
automorphisms (11). The counterpart of equation (13) for the transformed generatorsK ′,
H ′, P ′, M ′ reads


δ(H ′)
δ(P ′)
δ(K ′)
δ(M ′)

 =

ã 0 0 b̃ c̃ d̃

0 0 0 ã 0 h̃− b̃
ẽ 0 f̃ g̃ h̃ j̃

0 0 0 0 0 −(ã + f̃ )



H ′ ∧ P ′
H ′ ∧K ′
P ′ ∧K ′
H ′ ∧M ′
M ′ ∧K ′
M ′ ∧ P ′

 (13a)

and defines new parametersã, b̃, c̃ etc.
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By comparing equations (13) and (13a) and using the transformation rule (11) we arrive
at the following formulae:

ã = a

β2

b̃ = b

η4
+ α3α1

β2η4
c

c̃ = α1

η4γ3
c

d̃ = α1

β2η4
d − 2

η1α1

β2
3 a +

α1(α3β1− α1β3)

β2
2η4

c + β1η2

β2
2η4

a + β1

β2η4
h− η1

β2η4
f

ẽ = γ3

α1β2
e + α3γ3

β2
2 f +

α3

α1β2
a

f̃ = f

β2

g̃ = γ3

α1η4
g − β1γ3

α1β2
2e −

α3η2

β2
3 f +

α3

α1η4
b + α3γ3

β2η4
h− β1α3

β2
2α1

a + α3
2

β2η4
c + β3

α1η4
a

j̃ = γ3

β2η4
j − η1γ3

β2
3 e −

α3η1

β2
3 f +

γ3η2

β2
2η4

g + α3β1

β2
3 h−

α3η1

β2
3 a +

α3η2

β2
2η4

b

+α3(α3β1− α1β3)

β2
2η4

c + α3

β2η4
d + η2β3

β2
2η4

a − β3

β2η4
b − η3

β2η4
a

h̃ = h

η4
− β1

β2
2f +

α3

η4γ3
c

h̃− b̃ = h− b
η4
− η2

β2η4
f

ã + f̃ = a + f
β2

.

(15)

We are now in position to classify all orbits of the automorphism group in the space of
bi-algebra structures. This is achieved by a straightforward but long and painful analysis of
equation (15) (we attempt to nullify as many coefficients as possible on the left-hand side).
The resulting complete list of nonequivalent bi-algebra structures is summarized in table 1.

We have checked explictly that all the above bi-algebra structures are consistent and
inequivalent. It remains to find coboundary structures (listed also in table 1).

As is well known a cocommutatorδ given by

δ(X) = i[1 ⊗X +X ⊗ 1, r] r ∈ L ∧ L X ∈ L (16)

defines a coboundary Lie bi-algebra if and only ifr fulfils the modified classical Yang–
Baxter equation

[X ⊗ 1⊗ 1+ 1⊗X ⊗ 1+ 1⊗ 1⊗X, ξ(r)] = 0 X ∈ L (17)

whereξ(r) is the Schouten bracket

ξ(r) ≡ [r12, r13] + [r12, r23] + [r13, r23]

where

r12 = rijXi ⊗Xj ⊗ 1

r13 = rijXi ⊗ 1⊗Xj
r23 = rij1⊗Xi ⊗Xj .
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Table 1.

a b c d e f g h j Remarks

1 0 0 0 0 1 0 0 0 0
2 0 0 0 0 −1 0 0 0 0
3 0 0 0 0 0 0 0 1 0 coboundary
4 0 0 0 0 0 0 1 0 0 coboundary
5 0 0 0 1 0 0 0 0 0 coboundary
6 0 0 0 0 0 0 0 0 1 coboundary
7 0 0 0 0 0 0 0 0 −1 coboundary
8 0 0 0 0 0 0 0 1 1 coboundary
9 0 0 0 0 0 0 0 1 −1 coboundary

10 0 0 0 0 1 0 0 1 0
11 0 0 0 0 −1 0 0 1 0
12 0 0 0 1 0 0 1 0 0 coboundary
13 0 0 0 0 0 1 0 0 ε ε ∈ R
14 0 0 0 0 0 1 1 0 ε ε ∈ R
15 0 0 0 1 1 0 0 0 0
16 0 0 0 1 −1 0 0 0 0
17 0 1 0 0 0 0 0 0 0
18 0 1 0 1 0 0 0 0 0
19 0 ε 0 0 0 0 0 1 0 ε 6= 0
20 0 −1 0 0 0 0 1 1 0
21 0 ε 1 0 0 0 0 0 0 ε ∈ R
22 0 ε 1 0 0 0 0 0 1 ε ∈ R
23 0 ε 1 0 0 0 0 0 −1 ε ∈ R
24 0 ε 1 0 0 0 1 0 0 ε ∈ R
25 0 ε 1 0 0 0 −1 0 0 ε ∈ R
26 1 0 0 0 0 0 0 0 0

Let us put

r = AH ∧ P + CP ∧K +DH ∧M + EM ∧K + FM ∧ P. (18)

Equations (18) and (16) now give

δ(P ) = −CM ∧ P
δ(H) = EM ∧ P
δ(K) = −AH ∧M − CM ∧K +DM ∧ P
δ(M) = 0.

(19)

By comparying equations (13) and (19) we get

a = b = c = e = f = 0

A = −g C = −h D = j E = d
which serve to identify the coboundary structures in table 1.

4. The Lie–Poisson structures on two-dimensional Galilei group

In this section we find all Lie–Poisson structures on centrally extended two-dimensional
Galilei group. LetG be a Lie group,L its Lie algebra and{XRi } the set of right-invariant
fields onG. As is well known

{9,8} ≡ ηij (g)XRi 9XRj 8 (20)
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where

η(g) = ηij (g)Xi ⊗Xj, η : G→ 32L (21)

providesG with a Poisson–Lie group structure if and only if

ηilXRl η
jk + ηklXRl ηij + ηjlXRl ηki − cjlpηilηpk − cilpηklηpj − cklpηjlηpi = 0 (22)

η(g′g) = η(g′)+ Adg′η(g). (23)

In our case let us define

η(m, τ, a, v) = λ(m, τ, a, v)H ∧ P + µ(m, τ, a, v)H ∧K + ν(m, τ, a, v)P ∧K
+κ(m, τ, a, v)H ∧M + ρ(m, τ, a, v)M ∧K + π(m, τ, a, v)M ∧ P. (24)

Equation (23) gives

η(g′g) = (λ′ + λ− τ ′µ)H ∧ P + (ν ′ + ν − v′µ)P ∧K + (κ ′ + κ − v′λ+ a′µ)H ∧M

+(µ′ + µ)H ∧K +
(
ρ ′ + ρ + v

′2

2
µ− v′ν

)
M ∧K

+
(
π ′ + π − v

′2

2
λ+

(
v′a′ − v

′2τ ′

2

)
µ+ (v′τ ′ − a′)ν + v′κ − τ ′ρ

)
M ∧ P

(25)

whereλ′ ≡ λ(m′, τ ′, a′, v′) etc.
Consequently we obtain the following set of equations determiningλ, µ, ν, κ, ρ andπ

λ(m′′, τ ′′, a′′, v′′) = λ(m′, τ ′, a′, v′)+ λ(m, τ, a, v)− τ ′µ(m, τ, a, v)
µ(m′′, τ ′′, a′′, v′′) = µ(m′, τ ′, a′, v′)+ µ(m, τ, a, v)
ν(m′′, τ ′′, a′′, v′′) = ν(m′, τ ′, a′, v′)+ ν(m, τ, a, v)− v′µ(m, τ, a, v)
κ(m′′, τ ′′, a′′, v′′) = κ(m′, τ ′, a′, v′)+ κ(m, τ, a, v)− v′λ(m, τ, a, v)

+a′µ(m, τ, a, v)
ρ(m′′, τ ′′, a′′, v′′) = ρ(m′, τ ′, a′, v′)+ ρ(m, τ, a, v)+ 1

2v
′2µ(m, τ, a, v)

−v′ν(m, τ, a, v)
π(m′′, τ ′′, a′′, v′′) = π(m′, τ ′, a′, v′)+ π(m, τ, a, v)− 1

2v
′2λ(m, τ, a, v)

+v′κ(m, τ, a, v)+ (v′a′ − 1
2v
′2τ ′)µ(m, τ, a, v)

+(v′τ ′ − a′)ν(m, τ, a, v)− τ ′ρ(m, τ, a, v).

(26)

The strategy to solve equation (26) is to find first the form ofη for one-parameter
subgroups generated byP , K, H , M and to use again equation (26) as follows. We write
the general group element as a product of elements belonging to one-parameter subgroups
generated byP , K, H andM, respectively

(m, τ, a, v) = (((m, 0, 0, 0) ∗ (0, τ,0, 0)) ∗ ((0, 0, a,0) ∗ (0, 0, 0, v))) (27)

and then we apply equation (26) step by step as indicated on the right-hand side of
equation (27) to determine the form ofη for general group element.

Equation (26) as specialized for one-parameter subgroups generated byM, H , P and
K read

λ(m′′, 0, 0, 0) = λ(m′, 0, 0, 0)+ λ(m, 0, 0, 0)

µ(m′′, 0, 0, 0) = µ(m′, 0, 0, 0)+ µ(m, 0, 0, 0)
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ν(m′′, 0, 0, 0) = ν(m′, 0, 0, 0)+ ν(m, 0, 0, 0)

κ(m′′, 0, 0, 0) = κ(m′, 0, 0, 0)+ κ(m, 0, 0, 0)

ρ(m′′, 0, 0, 0) = ρ(m′, 0, 0, 0)+ ρ(m, 0, 0, 0)

π(m′′, 0, 0, 0) = π(m′, 0, 0, 0)+ π(m, 0, 0, 0)

λ(0, τ ′′, 0, 0) = λ(0, τ ′, 0, 0)+ λ(0, τ,0, 0)− τ ′µ(0, τ,0, 0)

µ(0, τ ′′, 0, 0) = µ(0, τ ′, 0, 0)+ µ(0, τ,0, 0)

ν(0, τ ′′, 0, 0) = ν(0, τ ′, 0, 0)+ ν(0, τ,0, 0)

κ(0, τ ′′, 0, 0) = κ(0, τ ′, 0, 0)+ κ(τ, 0, 0, 0)

ρ(0, τ ′′, 0, 0) = ρ(0, τ ′, 0, 0)+ ρ(0, τ,0, 0)

π(0, τ ′′, 0, 0) = π(0, τ ′, 0, 0)+ π(0, τ,0, 0)− τ ′ρ(0, τ,0, 0) (28)

λ(0, 0, a′′, 0) = λ(0, 0, a′, 0)+ λ(0, 0, a,0)

µ(0, 0, a′′, 0) = µ(0, 0, a′, 0)+ µ(0, 0, a,0)

ν(0, 0, a′′, 0) = ν(0, 0, a′, 0)+ ν(0, 0, a,0)

κ(0, 0, a′′, 0) = κ(0, 0, a′, 0)+ κ(0, 0, a,0)+ a′µ(0, 0, a,0)

ρ(0, 0, a′′, 0) = ρ(0, 0, a′, 0)+ ρ(0, 0, a,0)

π(0, 0, a′′, 0) = π(0, 0, a′, 0)+ π(0, 0, a,0)− a′ν(0, 0, a,0)

λ(0, 0, 0, v′′) = λ(0, 0, 0, v′)+ λ(0, 0, 0, v)

µ(0, 0, 0, v′′) = µ(0, 0, 0, v′)+ µ(0, 0, 0, v)

ν(0, 0, 0, v′′) = ν(0, 0, 0, v′)+ ν(0, 0, 0, v)− v′µ(0, 0, 0, v)

κ(0, 0, 0, v′′) = κ(0, 0, 0, v′)+ κ(0, 0, 0, v)− v′λ(0, 0, 0, v)

ρ(0, 0, 0, v′′) = ρ(0, 0, 0, v′)+ ρ(0, 0, 0, v)+ 1
2v
′2µ(0, 0, 0, v)− v′ν(0, 0, 0, v)

π(0, 0, 0, v′′) = π(0, 0, 0, v′)+ π(0, 0, 0, v)− 1
2v
′2λ(0, 0, 0, v)+ v′κ(0, 0, 0, v).

The corresponding solutions can be readily obtained:

λ(m, 0, 0, 0) = a1m

µ(m, 0, 0, 0) = a2m

ν(m, 0, 0, 0) = a3m

κ(m, 0, 0, 0) = a4m

ρ(m, 0, 0, 0) = a5m

π(m, 0, 0, 0) = a6m

λ(0, τ,0, 0) = b1τ − 1
2b2τ

2

µ(0, τ,0, 0) = b2τ

ν(0, τ,0, 0) = b3τ

κ(0, τ,0, 0) = b4τ

ρ(0, τ,0, 0) = b5τ

π(0, τ,0, 0) = b6τ − 1
2b5τ

2 (29)

λ(0, 0, a,0) = c1a

µ(0, 0, a,0) = c2a

ν(0, 0, a,0) = c3a

κ(0, 0, a,0) = c4a + 1
2c2a

2
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ρ(0, 0, a,0) = c5a

π(0, 0, a,0) = c6a − 1
2c3a

2

λ(0, 0, 0, v) = d1v

µ(0, 0, 0, v) = d2v

ν(0, 0, 0, v) = d3v − 1
2d2v

2

κ(0, 0, 0, v) = d4v − 1
2d1v

2

ρ(0, 0, 0, v) = d5v + 1
6d2v

3− 1
2d3v

2

π(0, 0, 0, v) = d6v − 1
6d1v

3+ 1
2d4v

2.

Now, using equations (29) and (26) we obtain the general form ofλ,µ, ν, κ, ρ andπ
(the resulting expressions were re-inserted back into equation (26) which provided further
constraints on the parameters):

λ(m, τ, a, v) = b1τ + d1v

µ(m, τ, a, v) = 0

ν(m, τ, a, v) = d3v

κ(m, τ, a, v) = b4τ − b1a + d4v − 1
2d1v

2

ρ(m, τ, a, v) = b5τ + d5v − 1
2d3v

2

π(m, τ, a, v) = (b1− d3)m+ b6τ − 1
2b5τ

2+ (b4+ d5)a + d6v − 1
6d1v

3

+ 1
2d4v

2− d3av − d5vτ + 1
2d3τv

2.

(30)

The general form ofη is given by equations (24) and (30). Our next aim is to classify
nonequivalentη’s. As is well knownη defines the bi-algebra structure onL through

δ(X) = dη(eitx)

dt
|t=0. (31)

Simple calculation gives

δ(H) = −b1H ∧ P − b4H ∧M − b5M ∧K − b6M ∧ P
δ(P ) = −b1H ∧M + (b4+ d5)M ∧ P
δ(K) = d1H ∧ P + d3P ∧K + d4H ∧M + d5M ∧K + d6M ∧ P
δ(M) = (b1− d3)M ∧ P.

(32)

By comparying equations (13) and (32) we get

a = −b1 e = d1 j = d6

b = −b4 f = d3 − (a + f ) = b1− d3

c = −b5 g = d4 h− b = b4+ d5

d = −b6 h = d5.

(33)

Equation (33), together with the results of previous section (table 1) gives us all
inequivalent Poisson structures on two-dimensional centrally extended Galilei group. To
this end we write out explicitly the general form of the Poisson bracket following from
equations (10), (20) and (30)

{f, g} = λ
(
∂f

∂τ

∂g

∂a
− ∂f
∂a

∂g

∂τ

)
+ κ

(
∂f

∂τ

∂g

∂m
− ∂f

∂m

∂g

∂τ

)
+µ

(
∂f

∂τ

(
∂g

∂v
− a ∂g

∂m
+ τ ∂g

∂a

)
−
(
∂f

∂v
− a ∂f

∂m
+ τ ∂f

∂a

)
∂g

∂τ

)
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Table 2.

{v, a} {v, m} {τ , a} {τ , m} {a, m} Remarks

1 τ0
2v − 1

2τ0
2v2 − 1

6τ0
2v3

2 −τ0
2v 1

2τ0
2v2 1

6τ0
2v3

3 v0
2τ0v v0

2τ0a

4 τ0
2v0v

1
2v0τ0

2v2

5 −v0
3τ0τ

6 v0
2τ0

2v

7 −v0
2τ0

2v

8 v0
2τ0v v0

2τ0a + v0
2τ0

2v

9 v0
2τ0v v0

2τ0a − v0
2τ0

2v

10 v0
2τ0v τ0

2v − 1
2τ0

2v2 v0
2τ0a − 1

6τ0
2v3

11 v0
2τ0v −τ0

2v 1
2τ0

2v2 v0
2τ0a + 1

6τ0
2v3

12 τ0
2v0v

1
2v0τ0

2v2 − v0
3τ0τ

13 τ0v0v − 1
2τ0v0v

2 εv0
2τ0

2v − v0τ0m ε ∈ R
14 τ0v0v − 1

2τ0v0v
2 τ0

2v0v εv0
2τ0

2v − v0τ0m+ 1
2v0τ0

2v2 ε ∈ R
15 τ0

2v − 1
2τ0

2v2 −v0
3τ0τ − 1

6τ0
2v3

16 −τ0
2v 1

2τ0
2v2 −v0

3τ0τ + 1
6τ0

2v3

17 −τ0v0
2τ −v0

2τ0a

18 −τ0v0
2τ −τ0v0

3τ − τ0v0
2a

19 v0
2τ0v −ετ0v0

2τ (1− ε)v0
2τ0a ε 6= 0

20 v0
2τ0v τ0v0

2τ + τ0
2v0v (1+ 1)v0

2τ0a + 1
2v0τ0

2v2

21 −v0
3τ −ετ0v0

2τ −εv0
2τ0a − 1

2τ
2v0

3 ε ∈ R
22 −v0

3τ −ετ0v0
2τ −εv0

2τ0a − 1
2τ

2v0
3 + v0

2τ0
2v ε ∈ R

23 −v0
3τ −ετ0v0

2τ −εv0
2τ0a − 1

2τ
2v0

3 − v0
2τ0

2v ε ∈ R
24 −v0

3τ −ετ0v0
2τ + τ0

2v0v −εv0
2τ0a − 1

2τ
2v0

3 + 1
2v0τ0

2v2 ε ∈ R
25 −v0

3τ −ετ0v0
2τ − τ0

2v0v −εv0
2τ0a − 1

2τ
2v0

3 − 1
2v0τ0

2v2 ε ∈ R
26 −v0τ0τ τ0v0a −v0τ0m

−ν
(
∂f

∂a

(
∂g

∂v
− a ∂g

∂m
+ τ ∂g

∂a

)
−
(
∂f

∂v
− a ∂f

∂m
+ τ ∂f

∂a

)
∂g

∂a

)
−ρ

(
∂f

∂m

(
∂g

∂v
− a ∂g

∂m
+ τ ∂g

∂a

)
−
(
∂f

∂v
− a ∂f

∂m
+ τ ∂f

∂a

)
∂g

∂m

)
−π

(
∂f

∂m

∂g

∂a
− ∂f
∂a

∂g

∂m

)
. (34)

In particular, the basic Lie–Poisson brackets read

{v, τ } = −µ = 0

{v, a} = ν = d3v

{v,m} = ρ = b5τ + d5v − 1
2d3v

2

{τ, a} = λ+ τµ = b1τ + d1v

{τ,m} = −aµ+ κ = b4τ − b1a + d4v − 1
2d1v

2

{a,m} = π + aν + τρ = 1
2b5τ

2+ (b1− d3)m+ b6τ + (b4+ d5)a

+d6v − 1
6d1v

3+ 1
2d4v

2.

(35)
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Obviously, there are further constraints on the parameters following from equation (22)
which have not been used yet. Instead of solving it we impose the Jacobi identities on
our Poisson brackets (which is equivalent to solving equation (22)). It appears that the
additional constaints are, through equation (33), equivalent to those given by equation (14)
which provides a further test of the consistency of our results.

Equations (33), (35) and the classification given in table 1 lead us finally to the following
classification of nonequivalent Lie–Poisson structures (table 2).

As far as table 2 is concerned the following remark is in order. Up until now we were
dealing with dimensionless generators and group parameters. In order to ensure the proper
dimensions we replace our generators by dimensionful ones according to the rules

H → H

τ0
P → P

v0τ0
K → K

v0
M → M

v0
2τ0

whereτ0 and v0 are arbitrary time and velocity units; the group parameters are redefined
appropriately. This redefinition has been already taken into account in table 2.

5. Conclusions

We have classified all inequivalent bi-algebra structures on the centrally extended two-
dimensional Galilei algebra and found the corresponding Lie–Poisson structures on the
group. The resulting classification appears to be quite rich and contains 26 inequivalent
cases, eight of them being the coboundary ones. This is in contrast with semisimple case as
well as the case of four-dimensional Poincaré groups in which there are only coboundary
structures.
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